THE MAPPING OF PSYCHOLOGY OF INTERNET USERS VACOR vs KARAP

Summary

The mapping of the psychology of a social group can be accomplished using Data Analysis methods with impressive results such as Factorial Analysis of Correspondences, Hierarchical Classification with VACOR, but mainly using the methodology of the Semiometry and the method KARAP.

Questionnaire of Semiometry

This specialised questionnaire does not seek to obtain opinions from questions presented in the form of proposals, but to attribute values to words according to the pleasant or unpleasant feeling of their invocation, in order to emerge the basic semiometric structure of the society as a whole.

The form of the questionnaire is as follows: Each word corresponds to a scale of seven graduations rated from -3 to +3 , where the sign (-) refers to an unpleasant sensation caused by the word, while the sign $(+)$ refers to in a pleasant feeling. Then for processing the data, this scale is replaced by an equivalent scale scaled from 1 to 7 , where -3 of the original corresponds obviously to the value 1 of the new scale, and +3 to the value 7 .

Respondents' answers are initially converted into a coincidence table that crosses words with values from 1 to 7 . This table is parsed with the Factorial Analysis of Correspondences to identify how each word was graded and other statistical conclusions. Then the table with respondents' answers is analyzed using the Pricipal Components Analysis.

On the factorial plans, the words and grades are displayed, while as complementary elements the variables that characterize social, economic and demographic information as well as questions of behavior and availability of the respondents.

The analysis is also enriched by creating other dual input tables, derived from the data of the semimetric questionnaire completing the researcher's knowledge on the subject he is studying using the KARAP method.

Table 1: The format of the semimetric questionnaire
By going to the Internet environment, put in a circle the corresponding degree of the feeling that causes you each of the following words. For example

- For the very unpleasant feeling circle - 3
- For the very pleasant feeling, circle +3
- Grades from -2 to +2 incrementally increase the intensity of the emotion caused by the word

$\alpha / \boldsymbol{\alpha}$	Words	Degree						
\1	A $\gamma \chi 0 \varsigma$－Stress	－3	－2	－1	0	1	2	3
$\Lambda 2$	Avoүvف́pıбף－Recognition	－3	－2	－1	0	1	2	3
$\triangle 3$	Avعv日vvó $\dagger \boldsymbol{\tau} \alpha$－Irresponsibility	－3	－2	－1	0	1	2	3
\4	Avo㐅ף́－Tolerance	－3	－2	－1	0	1	2	3
\5	Гvف́бŋ－Knowledge	－3	－2	－1	0	1	2	3
$\Lambda 6$		－3	－2	－1	0	1	2	3
17	$\Delta \mathrm{t} \alpha \sigma \kappa \varepsilon ์ \delta \alpha \sigma \eta$－Distraction	－3	－2	－1	0	1	2	3
$\Lambda 8$	Eүкк兀о́入 $\lambda \varepsilon \iota \psi \eta$－Abandonment	－3	－2	－1	0	1	2	3
49	Eүкро́ $\tau \varepsilon 1 \alpha$－Abstinence	－3	－2	－1	0	1	2	3
\10		－3	－2	－1	0	1	2	3
$\Lambda 11$	Екклๆбío－Church	－3	－2	－1	0	1	2	3
$\Lambda 12$	Eגcu日çía－Freedom	－3	－2	－1	0	1	2	3
$\Lambda 13$	E $\xi \alpha \underline{\rho} \tau \eta \sigma \eta$－Dependence	－3	－2	－1	0	1	2	3
$\Lambda 14$	Eлıкоıv ${ }^{\text {vía－Communication }}$	－3	－2	－1	0	1	2	3
\15	K $\alpha \tau \dot{\theta} \boldsymbol{\theta} ı \psi \eta$－Depression	－3	－2	－1	0	1	2	3
\16	Mavío－Mania	－3	－2	－1	0	1	2	3
\17	Meえ $\alpha \gamma \chi 0 \lambda i ́ \alpha-$ Melancholy	－3	－2	－1	0	1	2	3
$\Lambda 18$	Mova̧ıó－Solitude	－3	－2	－1	0	1	2	3
$\Lambda 19$	Napкштıко́－Drugs	－3	－2	－1	0	1	2	3
\20	Oıкоүと́vยı α－Family	－3	－2	－1	0	1	2	3
\21	Пapźa－Friends	－3	－2	－1	0	1	2	3
$\Lambda 22$	Пגףрочо́рŋбף－Information	－3	－2	－1	0	1	2	3
$\Lambda 23$	Порvoүрарі́ α－Pornography	－3	－2	－1	0	1	2	3
424	Пров $\lambda^{\prime} \eta \boldsymbol{\mu} \alpha \tau \alpha$－Problems	－3	－2	－1	0	1	2	3
$\Lambda 25$	इтopүף́－Affection	－3	－2	－1	0	1	2	3
\26	इv́үкроขбף－Conflict	－3	－2	－1	0	1	2	3
$\Lambda 27$		－3	－2	－1	0	1	2	3
$\Lambda 28$	Tvð¢ро́ $\pi \alpha \iota \chi$ víıı－Lucky games	－3	－2	－1	0	1	2	3
\29	Фvүท́－Escape	－3	－2	－1	0	1	2	3
\30	$\Psi \varepsilon ́ \mu \alpha \tau \alpha$－Lies	－3	－2	－1	0	1	2	3

Note：Each word has one identity．The identities remain in $\operatorname{Greek}(\Lambda 1, \ldots, \Lambda 30)$ for practical reasons，so as not to diminish the results of the analyzes made on the basis of Greek vocabulary．Of course，the conclusions are not affected by the replacement of the Greek words with the corresponding English．

Presentation of the data

In this research they took part 581 young boys and girls aged between 18 and 35 were included in this survey，of which 331 boys and 250 girls．The data table to be used for the post－transformation analysis of the initial values attributed to 30 words is as follows：

Table 2: Part of the coded responses

From Table 2, Table 3 gives an overview of how 581 young people rated 30 words.
Table 3: 30-word scores

ind	--1--	--2--	--3--	--4--	--5--	--6--	--7--	Ind	--1--	--2--	--3--	--4--	--5--	--6--	--7--
$\wedge 1$	83	125	146	172	33	16	6	\16	86	74	136	140	104	29	12
$\wedge 2$	15	58	133	181	116	56	22	$\wedge 17$	87	64	135	153	95	37	10
$\wedge 3$	55	73	166	178	80	23	6	\18	81	79	125	150	97	39	10
$\wedge 4$	29	46	181	155	116	52	2	$\wedge 19$	84	69	125	140	108	40	15
$\wedge 5$	13	43	108	118	128	105	66	$\wedge 20$	20	44	84	163	131	74	65
$\wedge 6$	8	40	90	135	132	96	80	$\wedge 21$	8	37	100	135	133	98	70
$\wedge 7$	17	29	95	132	126	88	94	$\wedge 22$	25	39	96	144	124	79	74
$\wedge 8$	71	71	127	165	103	33	11	$\wedge 23$	74	85	121	158	90	35	18
$\wedge 9$	26	45	126	201	124	48	11	$\wedge 24$	50	90	145	147	99	44	6
$\wedge 10$	32	39	107	176	123	80	24	$\wedge 25$	21	52	106	189	107	67	39
$\wedge 11$	33	55	127	177	117	42	30	$\wedge 26$	46	72	142	183	97	33	8
$\wedge 12$	22	50	88	142	129	59	91	$\wedge 27$	26	55	114	138	137	80	31
$\wedge 13$	44	89	123	131	129	43	22	$\wedge 28$	35	69	158	165	80	40	34
$\wedge 14$	25	43	79	145	125	106	58	$\wedge 29$	39	86	152	177	61	37	29
$\wedge 15$	77	94	135	145	84	40	6	$\wedge 30$	76	88	135	182	43	33	24

Note: The word Stress ($\Lambda 1$) 83 people out of 581 rated it 1 (i.e. -3)

STATISTICAL PROCESSING OF DATA

Based on the data in Table 3, the figures in Table 4 are shown
Table 4: Statistical parameters of the values in Table 3

Degrees	$-\mathbf{- 1 - -}$	$-\mathbf{- 2 - -}$	$-\mathbf{- 3 - -}$	$--4--$	$-\mathbf{- 5}-\mathrm{A}$	$-\mathbf{- 6 - -}$	$-\mathbf{- 7 - -}$	Total
Sum	1308	1903	3705	4717	3171	1652	974	17430
Average	43,6	63,57	123,83	156,47	105,97	55,10	32,47	581
$\%$	7,5	10,94	21,31	26,93	18,24	9,48	5,60	100

Note: The value of 1308 is the sum of the frequencies of " 1 " for the total of 30 words. The value of 43.6 was derived from quotient 1308/30. Interpretation of each average is as follows: Out of the 581 respondents, 43.6 rated the set of words with $1,63.6$ with 2 , and 5.60%, used grade 7 .

Table 5: Correlation coefficients between 30 words

IND	^1	$\wedge 2$	$\wedge 3$	$\wedge 4$	$\wedge 5$	$\wedge 6$	$\wedge 7$	$\wedge 8$	$\wedge 9$	$\wedge 10$	\ldots	$\wedge 25$	$\wedge 26$	$\wedge 27$	$\wedge 28$	$\wedge 29$	$\wedge 30$
$\wedge 1$	1	0,07	0,34	0,23	-0,10	-0,20	-0,14	0,42	0,17	0,16	\ldots	-0,15	0,17	-0,11	0,03	0,00	0,16
$\wedge 2$	0,07	1	-0,02	0,09	0,46	0,42	0,49	-0,16	0,06	0,12		0,27	-0,04	0,31	0,01	-0,08	-0,16
$\wedge 3$	0,34	-0,02	1	0,42	-0,12	-0,23	-0,17	0,36	0,08	0,14	...	-0,10	0,17	-0,15	0,18	0,18	0,17
$\wedge 4$	0,23	0,09	0,42	1	0,23	0,13	0,01	0,13	0,12	0,11	\ldots	-0,01	0,13	-0,01	0,09	-0,01	-0,04
$\wedge 5$	-0,10	0,46	-0,12	0,23	1	0,74	0,50	-0,29	0,06	0,02	\ldots	0,31	-0,07	0,34	0,00	-0,03	-0,17
$\wedge 6$	-0,20	0,42	-0,23	0,13	0,74	1	0,64	-0,33	-0,01	-0,02	\ldots	0,32	-0,10	0,34	0,03	0,03	-0,14
$\wedge 7$	-0,14	0,49	-0,17	0,01	0,50	0,64	1	-0,10	0,02	0,06	\ldots	0,31	-0,12	0,35	-0,03	0,00	-0,16
....	\ldots										\ldots					\ldots	
$\wedge 29$	0,00	-0,08	0,18	-0,01	-0,03	0,03	0,00	0,14	0,00	0,09	\ldots	-0,03	0,09	0,07	0,55	1	0,56
$\wedge 30$	0,16	-0,16	0,17	-0,04	-0,17	-0,14	-0,16	0,27	-0,02	0,06	\ldots	-0,20	0,21	-0,12	0,31	0,56	1,00

Table 5 shows that the majority of correlation coefficients are very low, indicating the correctness of the choice of words. Relatively strong association has few pairs of words, such as Knowledge ($\Lambda 5$) and Disposal ($\Lambda 6$) with $\mathrm{p}=0.74$, Mania ($\Lambda 16$) and Melancholy ($\Lambda 17$) with $\mathrm{p}=0.72$, Depression ($\Lambda 15$) and Mania ($\Lambda 16$) with $\mathrm{p}=0.70$, Family ($\Lambda 20$) and Friends ($\Lambda 21$) with $\mathrm{p}=0.67$.

Validity of replies

The processing of Table 3 with the Factorial Analysis of Correspondences gives the following results:

Table 6: Histogram of characteristic eigenvalues

TOTAL INERTIA : 0,12470					
Axis	Inertia	\%Interpretation	Sum	\| Histogram Eigenvalues	
1	0,0929573	74,59	74,59	\|*********************************	
2	0,0138359	11,07	85,66	$\\|^{1 * * * * *}$	
3	0,0085538	6,86	92,52		

The first two axis, i.e. the factorial plane 1×2, interpret 85.66% of the information, a very satisfactory percentage for extrapolations.
\checkmark Factorial plane 1x2

Diagram 1: Factorial plane 1x2
On the factorial plane 1×2 it is observed that the 7 values of the scoring scale which determine the emotions produced by these words to the respondents, present the

Guttmann effect. That is to say the succession of grades 1 to 7 on a curved line, certifies the rational behavior of the respondents as to how words are scaled.

Table 6 shows that the first three factorial axes interpret 92.52% of the total information derived from Table 3. The study and conclusions resulting from the study of the three-dimensional space are revealing the intensity of the emotion they cause 30 words of the respondents.
The analysis of Table 3 with the MAD software presents the following with respect to the three dimensional factorial space $1 \times 2 \times 3$

Table 7: The distribution of 30 words in the $1 \times 2 \times 3$ factorial space

Eight innder epace of [s2r]	1	2	[1	4	5	[8	7	${ }^{1}$
COMO:	2	T	3	3	6	3	4	3
	KMseletit	Ahandonment	Fubuanos	Vroual rality	Dlapasal	Brabe	treapomabily	Recogotion
	Commurication	Oferiession	Dependarat	Friands	Distactor	Espape	Abstrnence	Churrit
		İaria	Probisms	Compary	figadim	Les	Contr	Sfuction
		Truanctioly			Prevel		Lucky prmes	
		Scitude			Indomelat			
		-1agi						
		Bompyraph						

Table 7a: The distribution of 7 degrees in the $1 \times 2 \times 3$ factorial space

$\begin{aligned} & \text { Epitimer } \\ & \text { ipere of lilin } \end{aligned}$	1	1	1	4	1	1	7	Δ
bey		1		2	7	2	3	
		H1		(+1)	[14]	(2)	(1)	
				1			4	
				+ +2			0	

The combination of Tables 7 and 7 a demonstrates that the seven words of the 2 nd under space (Abandonment, Depression, Mania, Melancholy, Solitude, Drugs and Pornography) are associated with the most negative degree (1 or -3), showing the aversion of young people in these sad emerging situations, while the five words (Disposal, Distraction, Freedom, Family, Information) in the 5th under space are associated (see table 7a) with the most positive rating (7 or +3). The confrontation of these two groups of words means that the young Boys and Girls have principles and strong foundations to build a proper society.
The overview of Table 7a is given by the following Karapistoli diagram.

Figure 2: Factorial space 1x2x3
The corresponding chart for the eight under spaces of $1 \times 2 \times 3$ for 30 words is as follows

Figure 3：Under spaces 1，2，3，4 and 5，6，7，8
The words of the $1^{\text {st }}$（Knowledge，Communication）， $3^{\text {rd }}$（Tolerance，Dependence， Problems）and $8^{\text {th }}$（Recognition，Church，Affection）under spaces are «orphaned» by degrees because the same under spaces do not have a degree profile．That is why we are proceeding with the application of the KARAP method which will fill this gap．

Application the KARAP method

Applying the KARAP method to the data in Table 2，the following tables appear
Table 8：Distribution of the profiles of 581 respondents with the closest profile of one of the 30 words．

WORD	CROWD	\％	WORD	CROWD	\％
（＾1）Stress	14	2.41	（＾16）Mania	19	3.27
（＾2）Recognition	11	1.89	（ 117 ）Melancholy	26	4.48
（ 13 ）Irresponsibility	34	5.85	（＾18）Solitude	18	3.1
（ $\wedge 4)$ Tolerance	44	7.57	（＾19）Drugs	10	1.72
$(\wedge 5)$ Knowledge	19	3.27	（ 120 Family	2	0.34
（＾6）Disposal	29	4.99	（ 121 ）Friends	73	12.56
（ 17$)$ Distraction	11	1.89	（＾22）Information	10	1.72
（＾8）Abandonment	25	4.3	（＾23）Pornography	12	2.07
（ 19 ）Abstinence	26	4.48	（ 124 ）Problems	24	4.13
（ヘ10）Virtual reality	16	2.75	（ 125 ）Affection	1	0.17
（ヘ11）Church	8	1.38	（ 126 ）Conflict	36	6.2
（ヘ12）Freedom	9	1.55	（＾27）Company	6	1.03
（ 113 ）Dependence	18	3.1	（＾28）Lucky games	23	3.96
（ 114 ）Communication	5	0.86	（＾29）Escape	16	2.75
（ 115 ）Depression	23	3.96	（＾30）Lies	13	2.24

Note： 14 out of 581 respondents are more associated with the word Stress that is 2．41\％

Table 9: Distances of the profile of each respondent from 30-word profiles

ITEM	Dis^1	Dis^2	Dis^3	Dis^4	\ldots	Dis $\mathbf{1 1 3}$	Dis^14	\ldots	Dis^30	min DIS	VAR
$\mathbf{I 1}$	565,3	582,6	570,9	549,8	\ldots	420,5	501,2	\ldots	476,1	420,5	$\wedge 13$
$\mathbf{I 2}$	426,1	400,3	398,5	359,7	\ldots	440,4	427,4	\ldots	405,8	351,1	$\wedge 26$
$\mathbf{I 3}$	606,3	596,7	460,8	450,0	\ldots	509,6	618,3	\ldots	461,9	450,0	$\wedge 4$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\mathbf{I 5 8 1}$	524,6	504,4	567,2	518,2		522,1	482,0		439,5	429,3	$\wedge 29$

Based on the data in Table 9, the classification of the profile of the 581 respondents based on the minimum Euclidean distance from each 30 -word profile
This classification offers the ability to identify the profiles of respondents characterized by a specific word.

Table 10: Classification of the 581 respondents

WORD	$\wedge 1$	$\wedge 2$	\ldots	$\wedge 7$	\ldots	$\wedge 11$	$\wedge 12$	\ldots	$\wedge 20$	\ldots	$\wedge 25$	\ldots	$\wedge 30$
Crowd	14	11	\ldots	11	\ldots	8	9	\ldots	2	\ldots	1	\ldots	13
	113	153		15		148	131		170		1246		158
	197	155		146		178	1107		1136				171
	1181	1179		156		1118	1128						1155
	1247	1206		1100		1125	1154						1189
	1308	1251		1193		1127	1164						1197
	1341	1398		1320		1347	1166						1239
	1387	1420		1449		1458	1180						1254
	1423	1450		1452		1488	1217						1274
	1476	1512		1524			1508						1300
	1479	1569		1533									1315
	1513	1573		1544									1408
	1514												1436
	1541												1545
	1577												

From Table 2, with the help of the column containing the gender codes (1 or 2), a comparative table 11 is created, resulting in the creation of Table 12 which shows the words and to what extent the boys and girls

Table 11: Comparative data table between Boys ($\Lambda \mathrm{b} 1 . . \Lambda \mathrm{h} 30$) and Girls ($\Lambda \mathrm{g} 1 . . \Lambda \mathrm{g} 30$)

IND	へb1	Ab2	...	^b28	Nb29	Ab30	INR	^g1	/g2	...	Mg28	^g29	へg30
11	2	2	...	4	4	3	J1	2	2	...	4	3	2
12	2	3	...	3	2	3	J2	1	2	...	4	4	3
...-	\ldots
1250	4	3	...	4	4	4	J250	4	5	...	7	7	7
1251	4	4	...	3	3	3							
1252	2	7	...	5	4	6							
...							
1330	4	4	...	4	3	3							
1331	4	5	...	5	4	6							

Table 12: Part of the data table with the frequencies of the Boys and Girls degrees in 30 words

Ind	B-3	B-2	B-1	B0	B+1	B+2	B+3	G-3	G-2	G-1	G0	G+1	G+2	G+3
$\wedge 1$	40	70	76	122	10	11	2	43	55	70	50	23	5	4
$\wedge 2$	12	40	75	123	44	27	10	3	18	58	58	72	29	12
$\wedge 3$	26	44	96	101	52	9	3	29	29	70	77	28	14	3
$\wedge 4$	15	27	113	73	74	28	1	14	19	68	82	42	24	1
$\wedge 5$	5	27	69	76	80	53	21	8	16	39	42	48	52	45
$\wedge 6$	3	23	57	87	80	48	33	5	17	33	48	52	48	47
$\wedge 7$	11	21	53	82	77	49	38	6	8	42	50	49	39	56
...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\Lambda 25$	9	36	71	107	60	36	12	12	16	35	82	47	31	27
$\wedge 26$	19	37	88	109	55	19	4	27	35	54	74	42	14	4
$\wedge 27$	15	31	72	94	68	41	10	11	24	42	44	69	39	21
$\wedge 28$	16	40	101	88	49	22	15	19	29	57	77	31	18	19
¢29	19	50	89	104	32	23	14	20	36	63	73	29	14	15
$\wedge 30$	33	49	84	99	30	21	15	43	39	51	83	13	12	9

Applying the KARAP method to the data in Table 12, Table 13 appears
Table 13: Classification of the data in Table 12 using the KARAP method

BOYS							
$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{+ 1}$	$\mathbf{+ 2}$	$\mathbf{+ 3}$	
Mania	Depression	Tolerance	Recognition		Distraction	Freedom	
Melancholy	Pornography	Problems	Affection		Communication		
Solitude	Escape	Conflict			Family		
Drugs	Lies	Lucky games			Infomation		

GIRLS						
$-\mathbf{3}$	$-\mathbf{2}$	$-\mathbf{1}$	$\mathbf{0}$	$\mathbf{+ 1}$	$+\mathbf{2}$	$+\mathbf{3}$
	Stress	Irresponsibility	Abstinence	Virtual reality	Knowledge	
		Abandonment	Church	Company	Disposal	
		Dependence			Friends	

From Table 13 it is clear that the 30 words generally did not cause the girls too much negative or very positive emotions, that is they were more restrained than the boys.
In particular, the words that caused very strong negative feelings (-3) to the boys were Mania, Melancholy, Loneliness, and Drugs, while the word that gave them a very intense positive emotion (+3) was Freedom. With regard to Girls, the word that caused a relatively strong negative emotion (-2) was Stress, while the words that produced quite positive emotions (+2) were Knowledge, Disposal and Friends.

Table 14, which, based on the data in Table 2, shows the average load of 30 words in boys and girls. The ranking was based on the average score of each of the 581 respondents.

Table 14: classification of 30 words based on the average (see table 2)

A/A	WORDS	BOYS	WORDS	GIRLS
1	Distraction	4.68%	Distraction	4.65\%
$:$	Disposal	4.62:	Disposal	4.656
3	Friends	4574	Friends	4,5\%
4	Knowledge	4,537	Freedom	4,54
5	Information	4.44	Knowledge	4, 19%
6	Communication	+, $4+4$	Communication	4,4\%
7	Freedom	4,359	Family	4, 4 S 4
8	Family	4.36?	Information	4,424
9	Virtual reality	4.154	Affection	4324
10	Company	4,138	Company	4,1\%
11	Affection	4.09	Recognition	4,059
12	Abs tinence	4,0.4	Virtual reality	4,056
13	Recognition	39.4	Church	39
14	Church	3979	Dependence	3.84
13	Iolerance	3.845	Abstinence	3.8
16	Lucky games	3,76.	Lucky games	3,76
17	Dependence	3,653	Iolerance	3.658
18	Escape	3.613	Escape	3.632
19	Conflict	3,5\%	Problems	3.068
20	Solitude	3.56	Conflict	3,592
21	- Abandonment	3,552	Irresponsibility	3,472
22	Drugs	3552	-tbandonment	3,454
23	Pornography	3.507	Drugs	3,454
24	Melancholy	3,4\%	Pornography	3,456
25	Problems	3,483	Mania	338
26	Mania	3,425	Lies	338
27	Irresponsibility	3,39\%	Depression	3372
${ }^{28}$	Lies	3.38	Melancholy	3,3,4
29	Depression	3.353	Solitude	3,29\%
30	Stress	3	Stress	3,072

The order of magnitude of the same word in boys and girls is a clear indication of the hierarchy of the emotion that each word produces in both sexes.
From Table 14, table 15 is presented which presents the differences in the 30 -word ranking order between boys and girls.

Table 15

words	rank		Rank Differences
	Boys	Girls	
Stress	30	30	0
Recognition	13	11	2
Irresponsibility	27	21	6
Tolerance	15	17	-2
Knowledge	4	5	-1
Disposal	2	2	0
Distraction	1	1	0
Abandonment	21	22	-1
Abstinence	12	15	-3
Virtual reality	9	12	-3
Church	14	13	1
Freedom	7	4	3
Dependence	17	14	3
Communication	6	6	0
Depression	29	27	2
Mania	26	25	1
Melancholy	24	28	-4
Solitude	20	29	-9
Drugs	22	23	-1
Family	8	7	1
Friends	3	3	0
Information	5	8	-3
Pornography	23	24	-1
Problems	25	19	6
Affection	11	9	2
Conflict	19	20	-1
Company	10	10	0
Lucky games	16	16	0
Escape	18	18	0
Lies	28	26	2

Table 16, which is derived from the logical table $0-1$ of the KARAP classification (Table 10), shows the number and profiles of boys and girls that are closest to the profile of each of the 30 words.

Table 16: Frequency the profiles of boys and girls closest to the profile of each of the 30 words

1	2	3	4	5	6	7	8
Words	Frequency	\%		BOYS	\%	GIRLS	\%
Stress	14	2,41		10	3,02	4	1,6
Recognition	11	1,89		4	1,21	7	2,8
Irresponsibility	34	5,85		26	7,85	8	3,2
Tolerance	44	7,57		30	9,06	14	5,6
Knowledge	19	3,27		4	1,21	15	6
Disposal	29	4,99		11	3,32	18	7,2
Distraction	11	1,89		5	1,51	6	2,4
Abandonment	25	4,3		16	4,83	9	3,6
Abstinence	26	4,48		15	4,53	11	4,4
Virtual reality	16	2,75		8	2,42	8	3,2
Church	8	1,38		6	1,81	2	0,8
Freedom	9	1,55		6	1,81	3	1,2
Dependence	18	3,1		10	3,02	8	3,2
Communication	5	0,86		4	1,21	1	0,4
Depression	23	3,96		14	4,23	9	3,6
Mania	19	3,27		10	3,02	9	3,6
Melancholy	26	4,48		20	6,04	6	2,4
Solitude	18	3,1		9	2,72	9	3,6
Drugs	10	1,72		8	2,42	2	0,8
Family	2	0,34		2	0,60	0	0
Friends	73	12,56		31	9,37	42	16,8
Information	10	1,72		4	1,21	6	2,4
Pornography	12	2,07		9	2,72	3	1,2
Problems	24	4,13		14	4,23	10	4
Affection	1	0,17		1	0,30	0	0
Conflict	36	6,2		21	6,34	15	6
Company	6	1,03		3	0,91	3	1,2
Lucky games	23	3,96		14	4,23	9	3,6
Escape	16	2,75		10	3,02	6	2,4
Lies	13	2,24		6	1,81	7	2,8
TOTAL	581	100		331	100	250	100

The mapping of Psychology of the 581 respondents

To make the training the psychology mapping of the 581 respondents, the VACOR method must first be applied to the data in Table 3,in order that to create a 30-word dendrogramme, from which the classes with the specific characteristics of each one will be identified, which will be the psychology of the participants in it.
The 30 -word class K59 (diagram 1) is initially split into two classes of K58 and K54, while class K58 is split into two others by K57 and K55. These three classes will then be analyzed separately.

Diagram 1: Split K59 into three classes

- For K57 class

Class K57 is split into two classes of K56 and K53. K56 is broken down into K50 and K44, which in turn breaks down in K41 and K34, and class K53 is split into two classes of K51 and K45. These five classes represent the five psychological profiles of 311 respondents who present negative psychology with the following characteristics. Particularly

Diagram 2: Split of class K57 into five classes (in parenthesis the Boys and Girls composing the class)
-For K55 class
Class K55 is split into two classes of K52 and K48, which split into two classes of K43 and K25. The three classes (K52, K43, K25) represent the three psychological profiles of 112 respondents who show positive psychology with the following characteristics.

Diagram 3: Split of class K55 into three classes

- For K54 class

Class K54 is split into two classes of K49 and K47. These two classes represent 158 respondents who have very optimistic psychology with the following characteristics.

Diagram 4: Split of class K54 into four classes
Finally, with the mapping of the psychology of the 581 young people, 10 different profiles were identified, but they are needed by scientific analysis psychologists for the behavior of the individuals of each class.

VACOR vs KARAP

The two VACOR and KARAP classification methods, while using the same hierarchical classification class creation algorithm, have a substantial difference in the identification of objects involved in the classes based on the variables that make up each class.

In the case of the VACOR method, using the MAD software, initially with the two tables "Contribution of the variables to the node characterization", "Contribution of the variables to the splitting of the nodes" and then with the z distribution table, which more easily informs about the contribution of each variable to the configuration of classes, we have the ability to identify which variable is helping to shape them.

Table 17: Table with z values for the contribution of each variable

ind	--1--	--2--	--3--	--4--	--5--	--6--	--7--
$\Lambda 25$	-19,5148	-8,3311	-9,7341	16,247	0,7433	9,2493	6,4486
34	35,2565	5,8506	3,7224	-5,8913	-2,7815	-14,6393	-20,5087
41	26,1864	14,4866	2,3025	-0,6316	-7,8806	-14,8196	-20,6237
43	-12,5995	-12,0141	-7,2493	-0,1264	14,2952	19,3005	-4,9321
45	2,8848	18,9739	5,8199	-9,3384	4,8842	-9,0052	-18,3245
47	-25,9791	-16,5438	-16,2526	-12,2803	13,9872	35,7972	35,6477
49	-19,5148	-16,7131	-18,221	-6,1291	12,8237	15,4243	48,0055
50	30,947	31,3776	9,4342	10,0958	-39,878	-23,744	-17,2899
51	0,1287	8,3906	17,2112	9,4421	-15,4436	-16,938	-13,094
52	-15,4057	-9,0931	10,1118	10,8684	7,3824	-4,3627	-16,0829

From the data in Table 17 we find that the configuration of each class is affected by more than one variable (degrees), but to a different degree. Taking into account the variable with the most important contribution (something similar when we study a factorial plan using the COR and CTR parameters), we can identify which objects belong to each class.

By looking at the split of class K56 in the three classes K50, K34 and K41, we take into account, on the one hand, the elements of Table 16 for each variable, the highest value of the z distribution, on the other hand, the data in Table 17, resulting in the creation of Table 18

Пívaкая 18

Table 19: Words of the three classes that make up the node K56

Node	34	41	50
$\mathrm{~A}(\mathrm{I})$	33	35	$\mathbf{1}$
$\mathrm{~B}(\mathrm{I})$	$\mathbf{1 7}$	$\mathbf{1 5}$	30
Crowd	4	3	2
	$\wedge 16$	$\wedge 8$	$\wedge 1$
	$\wedge 19$	$\wedge 23$	$\wedge 30$
	$\wedge 18$	$\wedge 15$	
	$\wedge 17$		

Table 20: Respondents composing the three classes K50, K34 and K41 based on the highest value of the z distribution (κ ó $\mu \beta$ o $\varsigma=$ node)

From Table 20 we find that some respondents based on the highest value of the distribution z are in two classes (but also in three i.e I62, blue in k 50 , red in k 34 and red in k 41), the number of which is shown in Table 21.

Table 21: Table of coincidences

Class	K34	K41	K50	Total
K34	18 (black)	16 (red)	2 (I62,I202)	36
K41	16 (red)	8 (black)	2 (green)	26
K50	2 (blue)	2 (green)	19 (black)	23
Total	36	26	23	85

The identification of respondents with this process in two classes is obviously a problem for the pure composition of the Hierarchical Classification classes in the participation of objects with defined characteristics.

This problem is solved by the KARAP method after combining the elements of Tables 10 and 21. This combination creates Table 22, which shows for each class which EXACTLY respondents have the closest profile to the variables forming the class (as we do in studying a factorial plan), without having respondents belonging to two or more classes.

Table 22: Respondents that belong to each class

	K34				K41			K50	
Words	^16	$\wedge 17$	^18	$\wedge 19$	^8	^15	$\wedge 23$	^1	N30
Crowd	19	26	18	10	25	23	12	14	13
	136	123	19	121	118	130	067	113	358
	159	150	112	147	124	138	1117	197	171
	165	184	114	150	127	192	1126	1181	1155
	194	191	119	1121	129	099	1138	1247	1189
	1112	1109	122	1198	137	1161	1145	1308	1197
	1123	1116	133	1256	669	1212	1163	1341	1239
	1144	1133	141	1353	177	1215	1177	1387	1254
	1162	1143.	176	1392	1187	1226	1243	1423	1274
	1173	1183	1111	1405	1219	235	1268	1476	1300
	186	1196	1148	1455	1229	1275	1311	1479	1315
	1221	1216	1151		1231	1280	1413	1513	1408
	1234	1224	1257		1255	1297	1430	1514	1436
	1242	1340	1330		1278	1298		1541	15.45
	1245	1349	1351		1279	1335		1577	
	1294	1375	1384		1205	1344			
	1314	1377	1471		1306	1378			
	1556	1391	1549		1424	1402			
	1560	1406	1574		1432	1442			
	1576	1407			1441	488			
		1410			1462	1494			
		1444			1503	1505			
		1456			1509	1535			
		1499			1510	0565			
		1518			1553				
		1530			1580				
		1578							

This difference in the KARAP method for this particular problem is its comparative advantage over the implementation of the VACOR method in a data table, which attempts the Ascending Hierarchical Classification of Objects.

Then, for each group of respondents, we can analyze the specific features that distinguish them, completing the analysis with more specific results.

Conclusion

As it is known, words beyond the commemorations that motivate individuals have the power to cause pleasant or unpleasant feelings. Taking advantage of these words' properties, very simple market research questionnaires can be created, but mostly neutral with regard to the intentions of the investigator.
In general, the proposed questionnaire processing technique aims to evaluate respondents' feelings, caused by a limited number of words that are relevant to the research. This list appears to be arbitrary at first glance, but it aims at identifying the interpersonal thoughts of respondents, which with different wording of questions might not have the researcher the possibility to reveal.

The specific technique of processing a questionnaire offers the researcher an unprecedented experience. Particularly

1) By using the Semiometry

It is not intended to obtain opinions from questions presented in the form of proposals, for which it is often not only difficult for the researcher to propose classified answers, but to understand their content, the length of the proposal is large

- The number of questions in each case is significantly limited, so the questionnaire completion time is limited, parameters very basic for the validity of the answers.

2) By studying the phenomenon Guttmann

- It is not necessary to carry out a statistical check on the validity of the questionnaire; on the other hand, the investigator avoids statistical checks, whose effectiveness depends, as is well known, on a variety of assumptions which may not even apply.

3) Using the KARAP method

Using the KARAP method, we achieve the purest composition of Ascending Hierarchical Classification classes in the participation of objects with defined characteristics of the variables that contribute decisively to their creation, which is not achieved by the VACOR process.

Note: The analyzes were carried out with the software of Dr Dimitrios Karapistolis M.A.D (www.pylimad.gr)

References - Bibliography

BENZECRI J.P.(1973): «L'analyse des donnees. Tome 1:La Taxinomie. Tome 2: L'analyse des correspondances». Dunod. Paris
BENZECRI J.P.\& F. BENZECRI \& COLLABORATEURS (1986). «Pratique
de 1 ' Analyse des Donnees en Economie». Dunod. Paris. France
KARAPISTOLIS D. (1986): «Codage et analyse d'une epreuve logique».Les Cahiers de l'Analyse des Donnees. Vol XI, no 4 pp.482-484

KARAPISTOLIS D.(1996): «Creation of software for the composition of a solvent portfolio using methods of data analysis». University of Macedonia of Economic and Social Sciences. Thessaloniki. Greece. Department of Applied Informatics.

KARAPISTOLIS D. (2002) «MAD software. Workbooks of Data Analysis».
Volume II page 133. Thessaloniki. Greece
KARAPISTOLIS D..(2010) «Methods of processing and data analysis» Editor
A.Altintzis Thessaloniki Greece

KARAPISTOLIS D.(2011) «Multivariate Statistical Analysis» Editor A.Altintzis

Thessaloniki. Greece
KARAPISTOLIS D. (20012) «Business Statistics» Editor A.Altintzis Thessaloniki
Greece
KARAPISTOLIS D. (2015) «Comparison results between classification by VACOR and classification method based on Euclidean metric by SVM learning machine». http://www.gsda.gr/journal/archives/397. Tev́zoç 17
KARAPISTOLIS D. (2016) New research tools with multidimensional statistic analysis methods Ed. LAMBERT Academic Publishing 2016
LAGARDE J.(1983): «Initiation a l'analyse des donnees ».Dunod.Paris
LANG S. (1976) «Algebre Lineaire 1» InterEditions. Paris
LEBART L. PIRON M. STEINER J.F . (2003) «La Semiometrie» Dunod. Paris.
France.

